Elastic characterization of thin films by Brillouin light scattering
1.
INTRODUCTION
The problem of the
determination of the whole set of elastic constants of thin film materials has
attracted much attention in recent years, because of the growing importance of
layered structures in both theoretical studies and applications.
Measurement of the whole set of constants is usually out of the reach of
conventional static techniques, which can only give information about specific
elastic moduli.[i] On the other hand, use of
acoustic techniques based on surface acoustic waves (SAW) presents technical
difficulties connected with the
fabrication of the acoustical delay line. In addition, one has to consider that
in the frequency range commonly used, the large values of the acoustic
wavelength, compared to the film thickness, require a careful consideration of
the effect of the substrate on the propagation of the SAW.[ii]
These
limitations can be overcome using the Surface Brillouin Scattering (SBS)
technique which relies upon the inelastic scattering of photons by thermally
activated elastic waves (phonons). During the last twenty yeas, SBS has proved
to be very effective for achieving a complete elastic characterization of thin
films and multilayered structures.[iii]
It has many advantages over conventional ultrasonics techniques since it
does not require external generation of acoustic waves and it probes acoustic
phonons with wavelength in the submicron range. In a SBS experiment, a beam of
monochromatic light is used as a probe to reveal acoustic phonons which are
naturally present in the medium under investigation. The power spectrum of these
phonons is mapped out from frequency analysis of the light scattered within a
solid angle. Because
of the wavevector conservation in the magnon-photon interaction, the wavelength
of the revealed elastic waves is of the same order of magnitude of that of
light. This means that the wavelength is much larger than the interatomic
distances, so the material can be described as a continuum within an
effective-medium approach. From SBS measurements of the phonon frequencies as a
function of the the in-plane wavevector, a determination of the elastic constants can be attained. Another important
characteristic of SBS is that it is a non-destructive local technique (the
probed area of the sample is of the order of 10x10 mm)
and this permits to operate a scan of the magnetic properties of inhomogeneous
specimens. Both transparent and opaque materials can be investigated. Note that
in spite of the small penetration depth of light in metallic media (about ten
nanometers), the information gained by SBS concerns the whole coherence depth of
the acoustic waves, which is of the order of a few hundreds of nanometers. From a technical
point of view, due to the very weak signal to noise ratio and to the small
frequency of the excitations, it was still impossible to detect acoustic waves
in thin films and in opaque solids until the advent of a new class of
spectrometers designed and fabricated for the first time by Sandercock in the
seventies. He demonstrated that the sensitivity of a Fabry-Perot interferometer
could be dramatically increased by passing the scattered light several times
through the same interferometer.[iv]
Such an improvement led to the observation of light scattering from acoustic
phonons in thin film structures, both transparent and opaque.
2.
THE SURFACE BRILLOUIN
SCATTERING TECHNIQUE
It is well known that collective excitations in a solid can inelastically scatter incident light, through the induced modulation of the optical constants of the medium. This modulation is usually induced in transparent media via the elasto-optic effect. However, in the case of opaque media, either metals or semiconductors, also the rippling of the free surface induced by the presence of thermal phonons can scatter light. As an alternative approach to that based on the modulation of the optical constant of the medium, Brillouin scattering can be understood in very simple terms either as a Doppler shift of the frequency of light scattered from a propagating spin wave or as a photon-magnon collision in which the frequency and the momentum are conserved.
In a typical Brillouin scattering experiment one measures spin waves with frequencies in the range between about 1 and 150 GHz. In order to extract the weak inelastic component of light from the elastically scattered contribution, a high-resolution spectrometer is required. To this aim, the best combination of high resolution and good throughput is achieved using a tandem Fabry-Perot interferometer (FPI) as a scanning spectrometer
Most
of the SBS investigations performed in the past for determining the elastic
constants of thin films were concerned with layers of thicknesses lower than the
acoustic wavelength (0.3 - 0.4 micron),
supported by substrates with acoustic phase velocities higher than that of the
films (slow film / fast substrate). Under these conditions,
a number of discrete acoustic modes, namely the Rayleigh and the Sezawa
modes,[v]
are revealed in Brillouin spectra and the corresponding phase velocity can be
measured.
These
modes are dispersive, so that measurements are usually performed on films of
different thicknesses and with different angles of incidence. In most practical
cases one deals with polycrystalline films with a preferential orientation of
the crystallites along the normal to the plane of the free surface. These films
have a hexagonal (cylindrical) elastic symmetry which is characterized by five
independent effective elastic constants.
In these cases, four of the
five effective elastic constants, namely c11,
c113,
c33
and c44,
influence the Rayleigh and Sezawa modes, so that they can be evaluated by a best
fit procedure of the experimental velocities to the calculated dispersion curves.
People therefore tried to analyse films of different thickness, deposited under identical
conditions[vi]. Two main problems can
limit the reliability of the above procedure. First, the different elastic
constants can influence the acoustic modes in a similar way, so that a strong
correlation among the fitting parameters can occur.
Second,
the best fit procedure relies upon measurements from films of
different thicknesses (typically, from 10 to 400 nm), neglecting possible
structural and elastic differences among them. It may happen, for instance, that
a transition layer at the
interface between substrate and film material can occur[vii].
This can particularly occur for the films which are produced by processes which
involve high energies and particle momentum and are thus far from
thermodynamical equilibrium.
As for the fifth elastic constant c66
it can be determined from
measurement of the phase velocity of shear
horizontal modes (Love modes). We
notice, however, that since these modes are polarized parallel to the surface, their scattering efficiency is very low. Use of an opaque
substrate (typically crystalline silicon) is recommended in order to take
advantage from the presence of a reflecting interface which enhances the
Brillouin cross section.[viii]
In the case of film thickness approaching 1 micron or more, the number of
discrete modes (Sezawa and Love modes) can be very large, so it it can become
very difficult to resolve the individual modes. In this case, however, one can
see some resonances in the spectrum, resulting from a group of Sezava or Love
modes which merge together. These resonances in micrometric thick films happen
at frequencies which correspond to
either a longitudinal or a shear horizontal wave propagating parallel to the
film surface, named longitudinal guided mode (LGM) and shear horizontal mode (SHM),
respectively. During the last
fifteen years the group at the GHOST laboratory, University of Perugia, extensively
exploited SBS to characterize semiconductor and/or dielectric films of different
materials, such as C60, AlN, GaSe,
InSe, InGaAs,
SiO2 , SnO2, a-Ge:H, a-C and even multilayered metallic structures (Ag/Ni, Nb/Fe, Ta/Al, FeNi/Cu,
FeNi/Nb).
PUBLICATIONS
of our group concerning elastic properties of thin films
[i]
Review articles can be found in: MRS Bulletin, Vol. XVII, Number 7, (Material Research Society, Pittsburgh, 1992) pp.25-45
[ii]
See for instance H. Coufal, K. Meyer, R.K. Grygier, M. de Vries, D. Jenrich
and P. Hess, Appl. Phys. A 59, 83
(1994)
[iii]
G.I.
Stegemann, F. Nizzoli, in Surface Excitations, edited by V.M.
Agranovich and R. Loudon (Elsevier, North Holland, 1984), Chapter 2,
pp.195-378.
F.
Nizzoli, J.R. Sandercock, in Dynamical Properties of Solids, edited by
G.K. Horton and A.A. Maradudin (Elsevier, North Holland 1990), pp. 281-335.
P.
Mutti, C.E. Bottani, G. Ghislotti, M. Beghi, G.A.D. Briggs, J.R. Sandercock,
in Advances
in Acoustic Microscopy, Vol. 1, edited by A. Briggs (Plenum, New York,
1995), Chapter 7, pp. 249-300.
J.D.
Comins, in Handbook of Elastic Properties of Solids, Liquids, and Gases,
Vol. 1,
edited
by Levy, Bass, and Stern (Academic, New York, 2001), Chapter 15, pp. 349-378.
F.
Nizzoli and J.R. Sandercock, in Dynamical
Properties of Solids, edited by G.K. Horton and A.A. Maradudin (North-Holland,
Amsterdam, 1990), Vol. 6, p 307
[iv]
J.R. Sandercock Optics Commun. 2,
73 (1970).
[v] G.W. Farnell, E.L. Adler, in Physical Acoustics, Vol. 9, edited by W.P. Mason and R.N. Thurston (Academic, New York, 1972), pp. 35-127.
[vi]
B.
Hillebrands, P. Baumgart, R. Mock, G. Güntherodt, P.S. Bechthold, J. Appl.
Phys. 58, 3166 (1985).
F.
Nizzoli, R. Bhadra, O.F. de Lima, M.B. Brodsky, M. Grimsditch, Phys. Rev. B 37,
1007 (1988).
S.
Lee, B. Hillebrands, G.I. Stegeman, H. Cheng, J.E. Potts, F. Nizzoli, J. Appl.
Phys. 63, 1914 (1988).
T.
Wittkowski, J. Jorzick, K. Jung, B. Hillebrands, Thin Solid Films 353,
137 (1999).
G.Carlotti,
D.Fioretto, L.Palmieri, G.Socino, L.Verdini and E.Verona,
IEEE Trans. Ultrason., Ferroelect. Freq. Contr., 38, 56-61
(1991)
G.
Carlotti, D. Fioretto, L. Giovannini, G. Socino, V. Pelosin and B. Rodmacq, ,
Solid State Comm. 81, 487-489 (1992);
G.
Carlotti, D. Fioretto, G. Socino, B. Rodmacq and V. Pelosin,
J. Appl. Phys. 71, 4897-4902 (1992);
G.
Carlotti, G. Socino and L. Doucet, Appl. Phys.
Lett. 66, 2682-2684 (1995);
G.
Carlotti, L. Doucet, , J. Vac. Sci. Technol.
14, 3460-3464 (1996).
M.G.
Beghi, C.E. Bottani, P.M. Ossi, T.A. Lafford, B.K. Tanner, J. Appl. Phys. 81,
672
V.
Panella, G. Carlotti, G. Socino, L. Giovannini, M. Eddrief, C. Sébenne, J.
Phys.: Condens.
Matter 11, 6661 (1999).
W.
Pang, A.G. Every, J.D. Comins, P.R. Stoddart, X. Zhang, J. Appl. Phys. 86,
311 (1999).
[vii]
A.G.
Every, W. Pang, J.D. Comins, P.R. Stoddart, Ultrasonics 36, 223 (1998).
T.
Wittkowski, P. Cortina, J. Jorzick, K. Jung, B. Hillebrands, Diam. Rel. Mat.
9, 1957 (2000).
T.
Wittkowski, V. Wiehn, J. Jorzick, K. Jung, B. Hillebrands, Thin Solid Films 368,
216 (2000).
P.
Zinin, M.H. Manghnani, X. Zhang, H. Feldermann, C. Ronning, H. Hofsäss, J.
Appl.
X.
Zhang, R. Sooryakumar, Appl. Phys. Lett. 80, 4501 (2002).
[viii]
G. Carlotti, D. Fioretto, L. Palmieri, G. Socino,
V.I. Anisimkin and I.M. Kotelyanskii, 1993 IEEE Ultrasonics Symposium
Proceedings, (IEEE, New York,
1993) p. 811
D.
Fioretto, G. Carlotti, L. Palmieri, G. Socino and L. Verdini and A. Livi, Phys.
Rev. B., 47,
15286 (1993)
We have worked in the following project:
Funded by European Commission
within the
INFORMATION SOCIETIES
TECHNOLOGY(IST) PROGRAMME
The objective of this project is to measure strain in CMOS devices with a linewidth down to 0.15 mm for non volatile memories. Involved are eight different partners of five european countries.
QUICK INTRODUCTION TO BRILLOUIN
SCATTERING (Sorry, just in italian)
La
spettroscopia Brillouin di superficie (SBS) è una tecnica
di indagine non distruttiva capace di indagare le proprietà elastiche
di film sottili e strutture a multistrato. Queste brevi note costituiscono
una introduzione alle potenzialità di tale tecnica, con particolare
riferimento alla attività svolta nell'utimo quinquennio dal gruppo
operante presso il Dipartimento di Fisica dell'Università di Perugia.
-
Cos'è la spettroscopia Brillouin di superficie ?
La spettroscopia Brillouin di superficie è una tecnica di indagine
basata sul processo di diffusione anelastica(inelastic
scattering) della luce da parte dei fononi di superficie presenti nel
mezzo in esame per attivazione termica. Misurando la variazione di frequenza
della luce che ha interagito col mezzo in esame e conoscendo la geometria
di interazione, è possibile dedurre la velocità e l’attenuazione
dei modi acustici presenti nel mezzo e, da questi, ricavare informazioni
circa le sue proprietà elastiche. Questa tecnica è particolarmente
adatta alla caratterizzazione elastica di film sottili e strutture a multistrato
con spessori variabili da qualche nanometro fino a decine di micrometri.
Concettualmente dunque è una tecnica simile alla spettroscopia Raman,
ma rispetto a quest'ultima la SBS analizza intervalli di frequenza di gran
lunga inferiori (1-200 GHz, cioè 0.03-7 cm-1)
per poter rivelare fononi acustici e necessita quindi di uno strumento
(interferometro Fabry-Perot) che consenta di ottenere risoluzioni più
elevate di quelle normalmente ottenibili mediante spettrometri convenzionali
a reticolo di diffrazione.
-
Per quale tipo di indagine può essere utile ?
La spettroscopia Brillouin di superficie è utile per caratterizzare
le proprietà elastiche di strati sottili e di materiali con
ridotta dimensionalità, sia opachi che trasparenti alla luce. Il
suo impiego richiede una superficie piana di qualità ottica ed è
perciò particolarmente adatta all'analisi di wafers di materiali
impiegati in elettronica ed in optoelettronica. La porzione di campione
analizzata coincide con la piccola areola su cui viene focalizzato il raggio
laser, tipicamente dell'ordine di 10x10 microns. Molte applicazioni riguardano materiali mono-cristallini ma essa
si applica con eguale successo al caso di materiali amorfi o nanocristallini.
Una analisi dettagliata della forma di riga degli spettri Brillouin consente
poi di studiare l’attenuazine dei modi acustici e di ricavare quindi informazioni
sui fenomeni di rilassamento in sistemi complessi, come ad esempio film
polimerici.
Esempi
notevoli di materiali sui quali sono state condotte indagini mediante SBS
dal gruppo di Perugia sono i seguenti:
-
film piezoelettrici di ZnO ed AlN
-
multistrati metallici policristallini
-
film e multistrati a base di Si amorfo
-
film e superreticoli monocristallini a semiconduttore
-
film amorfi di vetri silicati
-
film di fullerene
-
film polimerici.
Le
informazioni ottenibili mediante la SBS permettono di determinare le costanti
elastiche e viscoelastiche dei mezzi esaminatie
di indagare dettagliatamente alcune caratteristiche fisiche quali ad esempio:
-
la qualità e la omogeneità dei materiali costituenti i film;
-
l'influenza sulle proprietà elastiche degli effetti di interfaccia,
quali il disordine atomico, l'interdiffusione, la presenza di sforzi, ecc.
-
la dipendenza delle proprietà elastiche dalletecniche
o dalle condizioni di crescita;
-
processi di rilassamento in mezzi disordinati (film vetrosi e/o poimerici).
-
Su quale meccanismo di interazione si basa ?
La diffusione anelastica della luce da parte dei fononi termici presenti
nel mezzo in esame avviene essenzialmente attraverso due meccanismi di
interazione. Il primo, dominante nel caso di mezzi opachi alla luce (metalli
e semiconduttori), è basato sulla corrugazione della superficie
del mezzo in esame da parte dei fononi termici. Questa corrugazione fa
si’ che la superficie si comporta come un reticolo di diffrazione mobile
e quindi introduce una variazione della frequenza luce diffusa per effetto
Doppler. Il secondo meccanismo, dominante nei materiali trasparenti alla
luce, è basato sull'accoppiamento tra la luce e le fluttuazioni
di densità nel mezzo, mediante l'effetto elasto-ottico. In
entrambi i casi, la conservazione del vettore d'onda nell'interazione fotone-fonone
fa sì che i fononi rivelati abbiano lunghezza d'onda comparabile
con quelle della luce, cioè molto maggiore della distanza interatomica.
Questo permette di poter interpretare i dati Brillouin all'interno della
teoria della elasticità, assumendo il mezzo in esame come un continuo
elastico.